S T i e st T ORI Computer System Organization and Architecture

Editor . Create a
Assembly program Create an Assembly language program
Prog.asm
Assmeber Assmebles the source progam
« to create an object program
Prog ob)
Linker Creates an executable programfile(.EXE)
Prog.exe
Execute Load and Execute the Prog.exe executable program

Different Steps Required to Execute an Assembly rm_._m:wmm Program
Fig. 3.2

Step II: Link Step:

The link step involves converting the .OBJ file to an .EXE machine code. The linker's tasks also
includes combining separately assembled program into one executable code. Thus, the Linker
(i) Combines assembled module into one executable program and

subsequent loading for execution.

(i) Generating an .EXE module and initializes with special instructions to facilitate its
Step III: Execute Step:

The last step is to load the program in memory for execution which is done by Loader.
3.5 PROGRAM LOOP

A program loop is a sequence of instructions that are executed many times, each time with a
different st of data. Program loops are specified in FORTRAN by a DO statement.

A program loop is a method which runs a logic until it will not catch the desired resul.

A System Program that translates a program written in a high-level programming language
such as the FORTRAN to a machine language program is called a compiler. A compiler is a more

complicated program than an Assembler and requires knowledge of systems programming to fully
understand its operation.

A compiler may usc an Assembly Language as an intermediate step in the translation or
may translate the program directly to binary.

Programming the Basic Computer

51
Line
1 ORG 100 /0ngin of program is SEX 100
2 LDA ADS /Load first address of operands
3 STAPTR /Store in pointer
4 LDA NBR /Load minus 100
5 STA CTR /Store in counter
6 CLA /Clear accumulator
7 LOP, ADD PTR 1 /Add an operand to AC
8 ISZ PTR /Increment pointer
9 ISZ CTR /Increment counter
10 BUN LOP /Repeat loop again
11 STA SUM /Store sum
12 HLT /Halt
13 ADS, HEX 150 /First address of operands
14 PTR, HEX 0 /This location reserved for a pointer
15 NBR, DEC -100 /Constant to initialized counter
16 CTR, HEXO0 /This location reserved for a counter
17 SUM, HEX 0 /Sum is stored here
18 ORG 150 /0rigin of operands is HEX 150
19 DEC 75 /First operaand
.
118 DEC 23 /Last operand
119 END /End of symbolic program

Symbolic Program to ADD 100 numbers
Program 3.1

The program loop specified by the DO statement is translated to the sequence of instructions
listed in lines 7 through 10. Line 7 specified an indirect ADD instruction because it has the symbol
1. The address of the current operand is stored in location PTR. When this location is addressed
indirectly the computer takes the content of PTR to be the address of the operand. As a result, the
operand in location 150 is added to the Accumulator. Location PTR is then incremented with the
ISZ instruction in line 8, so its value changes to the value of the address of the next sequential
operand. Location CTR is incremented in line 9, and if it is not zero, the computer does not skip the
next instruction. The next instruction is branch (BUN) instruction to the beginning of the lo8p, so
the computer returns to repeat the loop once again.

When location CTR reaches zero (alter the loop is executed 100 times), the next mstruction is

e

Scanned by CamScanner

. , cciiiFd
52 Computer System Organization and Architectur

. ; The ~d in the
skipped and the computer executes the instructions in hne 11 and 12. _._# sum formed

accumulator is stored in SUM and the computer halts. The Halt instruction is inscrted here for
clanty, actually, the program will branch to a location where it will continue o execute the rest of the
program or branch to the beginning of another program. Note that ISZ line 8 is used merely to add 1
to the address pomter PIR. Since the address is a positive number, a skip will never occur.

idca of a Pointer and a Counter which can be used,
ram loop. The pointer points to the
imes that the program loop is
In computers with more
er, another as a

I'he program of above Table introduccs the
together with the indirect address operation, to form a prog
address of the current operand and the counter counts the number of t
exceuted. In this example we use two memory locations for these functions.
than one Processor Register, it is possible to use one processor register as a point
counter, and a third as an accumulator. When Processor Registers are used as pointers and
counters they are called Index Registers.

3.6 Programming Arithmetic & Logic Operations

The number of instructions available in a computer may be a few hundred in large system or a
few dozen in a small one. Some computcr perform a given operation with one Machine
Instruction; other may require a large number of machine instructions to perform the same
operation. As an illustration, consider the four basic arithmetic operations. Some computers have
machinc instructions to Add, Subtract, Multiply and Divide. Others, such as the basic computer, have
only onc anthmetic instruction, such a ADD. Operations not included ‘in the set of machine
instructions must be implemented by a program.

Operations that arc implemented in a computer with one machine instruction are said to be
implemented by Hardware. Operations implemented by a set of instructions that constitute a
program are said to be implemented by Software. Some computers provides an extensive set of
Hardware instruction designed to speed up commion tasks. Others contain a smaller set of hardware
instructions and depend more heavily on the software implementation of many operations.
Hardware implementation is more costly because of the additional circuits needed to implement the
operation. Software implementation results in long programs both in number of instructions and in

execution time.

3.6.1 Multiplication Program

The program for multiplying two numbers is based on the procedure we use to multiply numbers
with paper and pencil. As shown in the numerical example of below Fig. 3.3, the multiplication
process consists of checking the bits of the multiplier Y and adding the multiplicand X as many
times as there are 1's in Y, provided that the value of X is shifted left from one line to the next. Since
the computer can add only two numbers at a time, we reserve a memory location, denoted by P, to
store intermediate sums. The intermediate sums are called partial products since they hold a partial
product until all numbers arc added. As shown in the numerical example under P, the partial product
starts with zero. The multiplicand X is added to the content of P for each bit of the multiplier Y
thatis 1.

The value of X is shifted left after checking each bit of the multiplier. The final value in P forms
the product, The numerical example has number with four significant bits. When multiplied, the
product contains cight significant bits. The computer can use numbers with eight significant bits to
produce a product of up to 16 bits.

The flowchart of above Fig. 3.3 shows the step-by-step procedure for programming the

Programming the Basic Computer B eeaanebrins i saanaaeinatsssEm s as s e R 53

multiplication operation. The program has a loop that is traversed eight times, once for cach

significant bit of the multiplier. Initially, location X holds the multiplicand and location Y holds the

multiplier. A counter CTR is set to -8 and location P is cleared to zero.

CTR« -8
P« 0 X halds the multiplicand

Y holds the multiplier

P forms the product

Example with four significant digits

X =0000 1111 P
Y =0000 1011 0000 0000
ACeY 0000 1111 0000 1111
0001 1110 0010 1101
0000 0000 0010 1101

E« 0
- 0111 1000 10100101
E 1010 0101

0
A4

Flow Chart for Multiplication Program
Fig.3.3

The multiplier bit can be checked if it is transferred to the E Register. This is done by clearing E,
loading the value of Y into the AC, circulating right E and AC and storing the shifted number back
into location Y. This bit stored in E is the low-order bit of the multiplier. We now check the value of E.
If it is 1, the multiplicand X is added to the partial product P. If it is 0, the partial product does not

change. We then shift the value of X once to the left by loading it into the AC and circulating left E and

Scanned by CamScanner

: OO— _\uENP- m.Cm—mwS O.QD_ ization ar Q \fﬁ}_hﬁﬁ::m
AC _:- oop 1S repeat d y i . . . i
T) i i - inc r location n.—.—ﬂ LSQ ﬁ—‘_ﬁn—ﬁ_:r‘- e<:G: t :um:u:n. S
Ll ! P peate P_T_: times by incrementing ,

zero. When the counter reaches zero, the program exits from the loop wit
location P.

ORG 100
LoP, CLE /Clear E
LDAY /Load multipher
CIR /Transfer multiplier bit to E
STAY /Store shifted multiplier
SZE /Check if bit 1s zero
BUN ONE /Bit is one; go 1o ONE
BUN ZRO /Bit s zero; go to ZRO
ONE, LDA X /Load Multiplicand
ADD P /Add to partial product
STAP /Store partial product
CLE /Clear E
ZRO, LDA X /Load multiplicand
CIL /Shift left
STAX /Store shifted multiplicand
ISZ CTR /Increment counter
BUN LOP /Counter not zero; repeat loop
HLT /Counter is zero; halt
CTR, DEC-8 /This location serves as a counter
X, HEX 000F /Multiplicand stored here
Y, HEX 000B /Multiplier stored here
P, HEX 0 /Product formed here
" END

Program to Multiply Two Positive Numbers
Program 3.2

3.7 Subroutines

Frequently, the same piece of code must be written over again in many different parts of a
program. Instead of repeating the code every time it is needed, there is an obvious advantage if the
common instructions are written only once. A set of common instructions that can be used in a
program many times is called a Subroutine, Each time that a subroutine is used int the main part of
the program, a branch is executed to the beginning of the Subroutine. A subroutine consists of a
self-contained sequence of instruction that carries out given task, A branch can be mad to the
subroutine from any part of the main program. This poses the problem of how the subroutine knows

Programming the Basic Computer e ST e e s one eSS s oo st e damed MRS 2 e 55

which location to return to, since many different locations in the main program may make branches
to the same subroutine, It is therefore necessary to store the return address somewhere in the
computer for the subroutine to know where to return. Because branching to a subroutine u.:a
returning to the main program is such a common operation, all computers provide special instruction
to facilitate subroutine entry and return.

In the basic computer, the link between the main program and a subroutine is the BSA
instruction (branch and save return address). To explain how this instruction 1s used, let us write a
subroutine that shifts the content of the Accumulator four times to the left. mEE:m, a word four
times is a useful operation for processing binary-coded decimal numbers or alphanumeric n:maﬂ.ﬁ,m.
Such an operation could have been included as a Machine Instruction in the computer. Since it is
not included, a subroutine is formed to accomplish this task. The program of above Program 3.2

starts by loaded the value of X into the AC.

Location

ORG 100 /Main program
100 LDAX /Load X
101 BSA SH4 /Branch to subroutine
102 STAX /Store shifted number
103 LDAY /Load Y
104 BSA SH4 /Branch to subroutine again
105 STAY /Store shifted nmaber
106 HLT
107 X, HEX 1234
108 Y, HEX 4321

/Subroutine to shitf left 4 times

109 SH4, HEX 0 /Store return address here
10A CIL /Circulate left once
10B L
10C CIL
10D CIL /Circulate left fourth ume
10E AND MSK /Set AC(13-16) to zero
10F BUN SH4 | /Return to main program
110 MSK, HEX FFFOQ /Mask operand

END

Program to Demonstrate the use of Subroutines
Program 3.3

The next instruction encountered is BSA SH4. The BSA instruction is in location 101. Subroutine

Scanned by CamScanner

56 . T T . Computer System Organization and Architecture

SH4 must return to location 102 after it finishes its task. When the BSA instruction is executed, the
control unit stores the return address 102 into the location defined by the symbolic address m._I
(which 1s 109). It also transfers the value of SH4 + 1 into the program counter. Alter this instruction
is executed. memory location 109 contains the binary equivalent of hexadecimal 102 and the
program counter contains the binary equivalent of hexadecimal 10A. This action has saved the return
address and the subroutine is now executed starting from location 10A (since this is the content of PC
in the next fetch cycle).

The computation in the subroutine circulates the content of AC four times to the left. In order to
accomplish a logical shift operation, the four low-order bits must be set to zero. This is done by
masking FFFO with the content of AC. A mask operation is a logic AND operation that clears the bits
of the AC where the mask operand is zero and leaves the birs of the AC unchanged where the mask
operand bits are 1's.

The last instruction in the subroutine returns the computer to the main program. This is
accomplished by the indirect branch instruction with an address symbol identical to the symbol used
for the subroutine name. The address to which the computer branches are not SH4 but the value
found in location SH4 because this is an indirect address instruction. What is found in location SH4 is
the return address 102 which was previously stored there by the BSA instruction. The computer
returns to exceute the instruction in location 102. 1 '5¢ main program continues by storing the shifted
number into location X. A new number is then lo, ¢ .t mto9 the AC from location Y, and another
branch is made to the subroutine. This time locativ. »i!4 will contain the return address 105 since
this 1s now the location of the next instruction after BSA. The new operand is shifted and the
subroutine returns to the main program at location 105.

From this example we sce that the first memory location of each subroutine serves as a link
between the main program and the subroutine. The procedure for branching to a subroutine and
returning to the main program is referred to as a subroutine linkage. The BSA instruction performs an
operation commonly caked subroutine call. The last instruction of the subroutine of the subroutine
performs an eperation commonly called subroutine return.

The procedure used in the basic computer for subroutine linkage is commonly found in
computers with only one Processor Register. Many computers have multiple processor registers
and some of them are assigned the name index register. In such computers, an Index Register is
usually employed to implement the subroutine linkage. A branch-to-subroutine instruction stores
the return address in an index register. A return-from-subroutine instrucaorn is effected by branching
to the address presently store in the Index Register.

3.8 INPUT-OUTPUT PROGRAMMING

Users of the computer write programs with symbols that are defined by the programming
language employed. The symbols are strings of characters and each character is assigned an 8-bit
codce so that it can be stored in computer memory. A binary-coded character enters the computer
when an INP (input) instruction is executed. A binary -coded character is transferred to the output
devise when an OUT (output) instruction is executed. The output device detects the binary code and
types the corresponding character.
Following Program (a) lists the instruction needed to input a character and store it in memory.
The SKI instruction checks the input flag to see if a character is available for transfer. The next

Programming the Basic Computerccc..ccooo o, e e e, BT

instruction is skipped if the input flag bit is 1. The INP instruction transfers the binary-coded

character into AC (0-7). The character is then printed by mean of the OUT instruction. A terminal unit
that that communicates directly with a computer does not print the character when a key is
depressed. To type it, it is necessary tp send an OUT instruction for the printer. In this way, the useris
ensured that the correct transfer has occurred. If the SKI instruction finds the flag bit at 0, the
instruction in scquence is executed. This instruction is a branch to return and check the flag bit again.
Because the input device is much slower than the computer, the two instructions in the loop will be
executed many times before a character is transferred into the accumulator.

Following Program (b) lists the instructions needed to print a character initially stored in
memory. The character is first loaded into the AC. The output flag is then checked. If it is O, the
computer remains in a two-instruction loop checking the flag bit. When the flag changes to 1, the
character is transferred from the Accumulator to the printer.

(a) Input a character :

CIF, SKI /Check input flag
BUN CIF /Flag = 0, branch to check again
INP /Flag = 1, input character
ouT /Print character
STA CHR /Store character
HLT
CHR, - /Store character here
(b) Output one character :
LDA CHR /Load character into AC
COF, SKO /Check output flag
BUN COF /Flag = 0, branch to check again
ouT /Flag = 1, output character
HLT
CHR, HEX 0057 /Character is “W™

Programs to Input and Output One Character
Program 3.4

3.8.1 Program Interrupt

The running time of input and output programs is made up primarily of the time spent by the
computer in waiting for the external device to set its flag. The waiting loop that checks the flag keeps
the computer occupied with a task that wastes a large amount of time. This waiting time can be
eliminated if the interrupt facility is used to notify the computer when a flag is set. The advantage of
using the interrupt is that the information transfer is initiated upon request from the external
device. In the meantime, the computer can be busy performing other useful tasks. Obviously, if no
other program resides in memory, there is nothing for the computer to do, so it might as well check
for the flags. The interrupt facility is useful in a multiprogramming environment when two or
more programs reside in memory at the same time.

Only one program can be executed at any given time even though two or more programs may

Scanned by CamScanner

